TCAD is Technology CAD used computer simulation to model semiconductor process and device technologies. The current solar cell technologies are:
· Silicon-based Cells
- Crystalline silicon (c-Si)
- Multi-crystalline silicon (mc-Si)
- Amorphous silicon (a-Si)
· Compound Semiconductor
- Single and multi-junction: GaAs, InGaP
- CdTe
- CIGS: Cu(In, Ga)Se2
· Emerging Technologies
- Organic semiconductors
- Quantum well, dots, etc.
Using TCAD in Solar Cell Design can allow designers to optimize efficiency and enable virtual exploration of new cell designs. That process simulation can be applied to silicon-based solar cells. Some applications are shown as follows:
- Fe Concentration
- Advanced Geometric Modeling
- Solar Spectrum
- Anti-Reflection Coating (ARC) Optimization
- External / Internal Quantum Efficiency, etc.
Several research publication:
- Wyatt K. Metzger (2008) “The potential and device physics of interdigitated thin-film solar cells” Journal of Applied Physics, Vol 103
- J. Dicker, et al. (2002) “Analysis of one-sun monocrystalline rear-contacted silicon solar cells with efficiencies of 22.1%” Journal of Applied Physics, Vol 91
- P.S. Plekhanov, et al. (1999) “Modeling of gettering of precipitated impurities from Si for carrier lifetime improvement in solar cell applications” Journal of Applied Physics, Vol 86
Comments from Dr. Kitch Wilson in LinkedIn:
An industry accepted software suite used to simulate the semiconductor physics of a solar cell is available free. It is called PC1D and can be downloaded from: www.pv.unsw.edu.au/links/products/pc1d.asp
Also, a very good tutorial that covers some of the simulation equations can be found at http://pvcdrom.pveducation.org/index.html
沒有留言:
發佈留言